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Screening Effect Due to Heavy Lower Tails in
One-Dimensional Parabolic Anderson Model
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We consider the large-time behavior of the solution u: [0, �)_Z � [0, �) to
the parabolic Anderson problem �tu=} 2u+!u with initial data u(0, } )=1 and
non-positive finite i.i.d. potentials (!(z))z # Z . Unlike in dimensions d �2, the
almost-sure decay rate of u(t, 0) as t � � is not determined solely by the upper
tails of !(0); too heavy lower tails of !(0) accelerate the decay. The interpreta-
tion is that sites x with large negative !(x) hamper the mass flow and hence
screen off the influence of more favorable regions of the potential. The
phenomenon is unique to d=1. The result answers an open question from our
previous study [BK00] of this model in general dimension.

KEY WORDS: Parabolic Anderson model; almost-sure asymptotics; large
deviations; Dirichlet eigenvalues; screening effect.

1. INTRODUCTION

1.1. Model and Main Aim

In a recent paper [BK00], we have studied the asymptotic behavior of the
solution u(t, z) to the so-called parabolic Anderson model for non-positive
i.i.d. potentials. Here we answer an open question concerning the almost-
sure asymptotics of u(t, 0) as t � � in dimension one for potentials lacking
the first logarithmic moment. Interestingly, a new phenomenon arises: too
heavy tails of the potential at &� hamper the mass flow to remote areas,
thus rendering the more favorable regions inaccessible. This effect is unique
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to d=1, since only in one-dimensional topology particles are not able to
bypass deep broad valleys in the potential landscape.

The general model is defined as follows. Let u: [0, �)_Zd � [0, �)
be the solution to the parabolic problem

�tu(t, z)=} 2du(t, z)+!(z) u(t, z), (t, z) # (0, �)_Zd

(1.1)
u(0, z)=1, z # Zd

where �t is the time derivative, }>0 is the diffusion constant, 2d is the dis-
crete Laplacian on Zd, [2df ](z)=�xtz [ f (x)& f (z)], and !=(!(z))z # Z d

is an i.i.d. field. We use ( } ) to denote the expectation with respect to ! and
Prob( } ) to denote the underlying probability measure. One interpretation
of the quantity u(t, z) is the total expected mass accumulated at time t
by a particle starting at z at time 0 and diffusing through a random field
of sources (sites x with !(x)>0) and sinks (sites x with !(x)<0). The
references [GM90], [CM94] and [K00] provide more explanation and
other interpretations.

Besides [BK00], the large-t behavior of the solution to (1.1) has
extensively been studied (in general dimension) for various other classes
of distributions: see [GM90, GM98, GH99] for ! having the so-called
double-exponential upper tail, and [GK98, GKM99] for a continuous
variant of (1.1) with ! either Gaussian or (smeared) Poissonian field. The
techniques used in these studies go back to the pioneering work of Donsker
and Varadhan [DV75, DV79]; however, there is also an intimate relation
to Sznitman's method of enlargement of obstacles [S98]. We refer to
[K00] for a comprehensive discussion of these relations and a unified
presentation of the above results. Henceforth, we shall focus on the almost-
sure behavior of u(t, 0) in the non-positive case, i.e., ! # [&�, 0]Z d

.
In dimensions d�2, the analysis in [BK00] produced a fairly complete

picture. Indeed, interesting behavior occurs only when p=Prob(!(0)>
&�)>pc(d ), the threshold for site percolation on Zd, and when condi-
tioned on the event that the origin lies in the infinite cluster of sites x with
!(x)>&�. Below and, provided there is no critical percolation (which is
rigorously known for d=2 [R78] and d�19 [HS90]), also at pc(d ), and
also when the origin lies in a finite cluster for p>pc(d ), the quantity u(t, 0)
decays exponentially in t with a !-dependent rate.

In dimension d=1, we have pc(d )=1, which necessitated setting
Prob(!(0)=&�)=0 in [BK00]. However, the latter condition was not
sufficient because the existence of the first logarithmic moment, i.e.,
( log(&!(0) 6 1))<�, also had to be assumed in order to establish an
asymptotics analogous to the supercritical case in d�2. In particular, two
intriguing questions remained unanswered:
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v Is ( log(&!(0) 61)) <� optimal in the sense that ( log(&!(0)
6 1))=� implies a strictly different asymptotic behavior of u(t, 0)?

v What is the precise decay rate when the finiteness of ( log(&!(0)
6 1)) is robustly violated (keeping however the restriction to ``no atom at
&�'')?

In this paper we give answers to these questions under mild regularity
conditions on the lower tail of the distribution of !. In particular, we show
that ( log(&!(0) 6 1))<� is only marginally non-optimal for the
behavior described in [BK00], see Remark 3 after Theorem 1.1. As it turns
out, the decay of u(t, 0) is determined solely by upper and lower tails of
Prob(!(0) # } ). The reason why the intermediate part of the distribution
does not play any role is that these tails give rise to two dominant and
mutually competing mechanisms (field-shape optimization in the upper tail
versus screening effect in the lower tail) whose balancing determines the
decay rate. See Subsection 2.2 for more precise heuristic explanation.

1.2. Our Assumptions

We proceed by stating precisely the needed assumptions, both on
upper and lower tails of !(0). First we restrict ourselves to dimension d=1
for the sequel of this paper. In accord with [BK00], we consider the dis-
tributions with the upper tail of the form

Prob(!(0)�&x)=exp[&x&#�(1&#)+o(1)], x a 0 (1.2)

for some # # [0, 1). However, instead of the distribution function, it is more
convenient to work with the cumulant generating function

H(l)=log(el!(0)), l�0 (1.3)

The regime in (1.2) corresponds to the behavior H(l)=&l#+o(1) as l � �.

Assumption (H). Let esssup !(0)=0 and suppose there are con-
stants A>0 and # # [0, 1), and a positive increasing function t [ :t such
that

lim
t � �

:3
t

t
H \ t

:t
y+=&Ay#, y>0 (1.4)

The limit in (1.4) is necessarily uniform on compact sets in (0, �), the
pair (A, :t) is unique up to a scaling transformation. Moreover, t [ :t
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is regularly varying and :t=t&+o(1) as t � � where &=(1&#)�(3&#) #
(0, 1�3]. In particular, t�:t � �, i.e., Assumption (H) indeed controls the
upper tails of !(0). We say that H is in the #-class if (1.4) holds.

Next we formulate our assumption on the lower tails of !(0) at
essinf !(0)=&�. As the opposite case has already been handled in
[BK00], we shall focus on the case where log(&!(0) 6 1) is not integrable.
Central to our attention are lower tails of the form

Prob(log(&!(0) 6 1)>x)=x&`+o(1), x � � (1.5)

with ` # [0, 1]. In terms of the modified cumulant generating function

G(l)=&log( (&!(0) 6 1)&1�l) , l>0 (1.6)

the behavior (1.5) roughly corresponds to G(l)=l&`+o(1) as l � �. Note
that G is positive and decreasing since essinf !(0)<&1. The following is a
weak regularity condition for G at infinity.

Assumption (G). Let ( log(&!(0) 6 1)) =� but Prob(!(0)=
&�)=0. Suppose that for each ' # (0, 1) there is a function G� ' : (0, �)
� (0, �) with the following properties:

(i) G� '(l)�G(l)'+o(1) as l � �.

(ii) l [ 1�G� '(l) is increasing and concave for l large enough.

(iii) The random variable 1�G� '(log(&!(0) 6 1)) has the first moment.

Remark 1. As it turns out, Assumption (G) is needed only for the
proof of the lower bound in our main result (see Theorem 1.1 below); the
upper bound requires no assumptions at all. The role of Assumption (G)
and particularly of its part (i) is the following: Abbreviate Y=log(&!(0)
6 1) and note that, for any $ # (0, 1], G(l)�(Y$) l&$. Therefore, G(l)�
l&`*+o(1) where `

*
=sup[$�0 : (Y$)<�]. However, a lower bound of

the same (even asymptotic) form requires some regularity of l [ G(l) as
l � �, which is the essence of (i)�(iii).

Remark 2. In the view of Remark 1, it is immediate that Assump-
tion (G) holds for regularly varying G(l)=l&`+o(1) with ` # (0, 1]. The
reason why we prefer the above (little cumbersome) setting as opposed to
simple regularity of G is that many cases with G(l)=lo(1) are automati-
cally included. Indeed, consider the following example: Let %>0 and
Prob(log(&!(0) 6 1) # dx)tC�[x log1+%(x)] dx as x � �, where C is the
normalizing constant. Then G(l)tC$(log l)&% and Assumption (G) holds
with G� '(l)=G(l)[log log(l 6 e)]1+%$ for any '<1 and any %$>0.
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1.3. Main Result

We begin by defining the scale function of the almost-sure asymp-
totics:

bt

:2
bt

=&log G(t), t>0 (1.7)

In other words, t [ bt is the inverse of the function t [ t:&2
t (which we

may and shall assume to be strictly increasing), evaluated at &log G(t).
Note that, since liml � � G(l)=0, we have bt � � as t � �. If G(l)=
l&`+o(1) as l � � for some ` # (0, 1], then :2

bt
=` ;(log t) ;+o(1), where

;=2&�(1&2&)=2(1&#)�(1&3#) # (0, 2]. In the case `=0, :bt
=o(log ; t)

as t � �.
Here is our main result. The constant /~ appearing in (1.8) depends

only on A, # and }, and will be defined in Subsection 2.1.

Theorem 1.1. Let d=1 and suppose that Assumption (H) and
Assumption (G) hold. Define t [ bt as in (1.7), and let /~ be the constant
in Theorem 1.5 of [BK00]. Then

lim
t � �

:2
bt

t
log u(t, 0)=&/~ , Prob-almost surely (1.8)

Interestingly, if l [ G(l) has a power-law decay as l � �, the lower-
tail dependence of the rate can explicitly be computed. This allows for an
easy comparison with the assertion in Theorem 1.5 of [BK00]. Let t [ bt*
be the scale function introduced in [BK00]:

bt*
:2

b*t

=log t (1.9)

Recall `
*

=sup[$�0 : ([log(&!(0) 6 1)]$)<�]. For G decaying with
a power law, necessarily, G(l)=l&`*+o(1). The following is an immediate
consequence of Theorem 1.1 and the regularity of t [ :t :

Corollary 1.2. Let d=1, suppose Prob(!(0)=&�)=0 and sup-
pose that Assumption (H) holds. Assume that either `

*
=1 or `

*
# (0, 1)

and G(l)=l&`*+o(1) as l � �. Then

lim
t � �

:2
b*t

t
log u(t, 0)=&`

*
&;/~ , Prob-almost surely (1.10)

where ;=2(1&#)�(1&3#).

1257Screening Effect in Parabolic Anderson Model



Remark 3. By comparison of Corollary 1.2 and Theorem 1.5 of
[BK00], `

*
=1 is necessary and sufficient for the assertion of the latter to

hold, at least in the class of distribution with G decaying as a negative
power. In particular, the condition that ( log(&!(0) 6 1))<� in [BK00]
is only marginally non-optimal because Theorem 1.5 also literally holds if
we just assume that [log(&!(0) 61)]$ be integrable for any $<1. This
answers the first of the questions above.

Remark 4. The cases with `
*

>0 have a different absolute size of
the rate while the time dependence remains as for `

*
=1. However, when

`
*

=0, also the time dependence changes. For instance, in the aforemen-
tioned example Prob(log(&!(0) 61) # dx)tC�[x log1+%(x)] dx as x � �
(see Remark 2), :2

bt
=[log log t] ;+o(1), which grows much slower than in

the case `
*

>0. For yet thicker tower tails, even slower growths are
possible. We conclude that the result of Theorem 1.5 of [BK00] qualita-
tively changes only when &!(0) lacks all positive logarithmic moments.

The remainder of this paper is organized as follows: In the next section
we define some important objects and use them to give a heuristic outline
of the proof. The actual proof comes in Section 3. Since many steps can
almost literally be taken over from [BK00], we stay as terse as possible.
The essentially novel part are Lemmas 3.2, 3.3, and 3.4.

2. DEFINITIONS AND HEURISTICS

2.1. Auxiliary Objects

For the sake of both completeness and later reference, we will now
introduce the objects needed to define the quantity /~ in Theorem 1.1. Then
we proceed by recalling the Feynman�Kac representation and some
formulas for Dirichlet eigenvalues.

2.1.1. Definition of /~

Let FR be the set of continuous functions f : R � [0, �) satisfying
supp f/[&R, R] and having total integral equal to one. Let C+(R)
(resp., C&(R)) be the set of continuous functions [&R, R] � [0, �) (resp.
[&R, R] � (&�, 0]). For H in the #-class, let HR : C+(R) � (&�, 0] be
the functional defined by

HR( f )=&A |
[&R, R]

f #1[ f >0] dx (2.1)

where A is as in (1.4).
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Let LR : C&(R) � [0, �] be the Legendre transform of HR :

LR(�)=sup[( f, �)&HR( f ) : f # C+(R), supp f/supp �] (2.2)

where ( f, �)=� f (x) �(x) dx. Conventionally, LR(0)=�. If H is in the
#-class with a # # [0, 1), LR(�) can explicitly be computed: for any
� # C&(R), ��0,

LR(�)={(1&#&1)(A#)1�(1&#) � |�(x)|&#�(1&#) dx,
&A |supp �|,

if # # (0, 1)
if #=0

(2.3)

where |supp �| is the Lebesgue measure of supp �. (Here LR(�)=�
whenever # # (0, 1) and the integral diverges.)

The last object we need is the principal eigenvalue of the operator
}2+� on L2([&R, R]) with Dirichlet boundary conditions:

*R(�)=sup[(�, g2)&} &{g&2
2 : g # C �

c (supp �, R), &g&2=1] (2.4)

with the interpretation *R(0)=&�. Then

/~ =&sup
R>0

sup[*R(�) : � # C &(R), LR(�)�1] (2.5)

As was proved in [BK00], /~ # (0, �).

Remark 5. In d=1, the minimizer of an associated variational
problem (namely, that for the annealed or moment asymptotics) can
explicitly be computed, see [BK98]. Proposition 1.4 of [BK00] then
allows /~ to be evaluated in a closed form. Except for #=0, no such expres-
sion is known in higher dimensions.

2.1.2. Feynman�Kac Formula, Dirichlet Eigenvalues

Let (X(s))s # [0, �) be the continuous-time simple random walk on Z
with generator }2d. We use Ex to denote the expectation with respect to
the walk starting at x. The Feynman�Kac representation for u(t, } ) then
reads

u(t, x)=Ex _exp {|
t

0
!(X(s)) ds=& (2.6)

Given R>0, let QR=[&R, R] & Z and let uR(t, x) be the solution to the
system (1.1) in QR and Dirichlet boundary condition uR( } , x)=0 for
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x � QR . Let {R be the first exit time from QR , i.e., {R=inf[s>0 :
X(s) � QR]. Then

uR(t, x)=Ex _exp {|
t

0
!(X(s)) ds= 1[{R>t]& (2.7)

Note that R [ uR(t, x) is increasing.
In the forthcoming developments we will also need the principal

Dirichlet eigenvalue of the operator }2d+! in the box z+QR centered
at z:

*d
z; R(!)=sup { :

x # QR

!(x+z) g(x)2

+} :
x # QR

g(x)[2dg](x) : g # l2(QR), &g&2=1= (2.8)

Note that, by the standard eigenvalue expansion (see [BK00]),

eR(z)2 et* d
z; R(!)�uR(t, z)�[*QR ]2 et*d

z ; R(!) (2.9)

where eR( } ) is the l2-normalized principal eigenvector in QR . In particular,
the logarithmic asymptotics of uR(t, z) and the asymptotics of t*d

z; R(!)
coincide provided R=R(t) does not grow too fast with t (which ensures
that t [ eR(t)(z)2 does not decay too fast).

2.2. Heuristic Explanation

As alluded to in the introduction, (1.8) results from the competition of
two mechanisms: (1) searching for optimal shapes of the potential by the
walk in (2.6) and (2) screening off far away sites by regions of strongly
negative potential. Let us describe this interplay in detail. To avoid cluttering
of indices we often use :(bt) in the place of :bt

.
Consider a ``macrobox'' Qr(t)=[&r(t), r(t)] & Z with r(t)r

exp[bt :(bt)
&2], where we think of bt as of a yet undetermined scale func-

tion. Fix R>0 and a shape function � # C&(R) satisfying LR(�)<1.
A Borel�Cantelli argument shows that there exists a randomly located
microbox in Qr(t) , with diameter 2R:(bt), where ! is shaped like �t( } )r

�( } �:(bt))�:(bt)
2. Let us assume that R and � approximately maximize

(2.5), i.e., *R(�)r&/~ . Then the dominating strategy for the walk is to
move in a short time to that favorable microbox and spend the rest of the
time until t in it. The contribution coming from the long stay in the
microbox is roughly exp[t*R:(bt)

(�t)], which can be approximated by
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exp[t:(bt)
&2 *R(�)]rexp[&t:(bt)

&2 /~ ], using the scaling properties of
the Laplace operator.

The size of the macrobox is determined by the amount of mass the
walk loses on the way from the origin to the favorable microbox, while
traveling through long stretches of large negative potential. A calculation
shows that the penalty it pays is roughly of order exp[&�r(t)

x=1 log(&!(x)
6 1)]. (An optimal strategy is not to spend more than (&!(x) 6 1)&1 time
units at each site x on the way.) Under our assumptions on the lower tails
of !(0), a Borel�Cantelli argument shows that this penalty is roughly
exp[&G&1(1�r(t))], where G&1 denotes the inverse function of G.

As it turns out, the two mechanisms run at optimal ``speed'' when the
two exponents are roughly of the same order, i.e., G&1(1�r(t))rt:(bt)

&2

rt, because :bt
<<t. Recalling that r(t)rexp[bt:(bt)

&2], this reasoning
leads to (1.7). A fine tuning of r(t) makes the contribution from the travel
to the microbox negligible compared to the contribution from the stay in
it, i.e., we shall in fact have G&1(1�r(t))=o(t:(bt)

&2). Hence, we obtain
(1.8) with /~ as in (2.5).

3. PROOF OF THEOREM 1.1

As in [BK00], the main result will be proved by separately proving
upper and lower bounds in (1.8). The proof of Corollary 1.2 comes at the
very end of this section.

3.1. The Upper Bound

Recall the notation of Subsection 2.1, in particular that QR=[&R, R]
& Z. Let

r(t)=&
3

G(t)
log G(t) (3.1)

Note that r(t)=t`+o(1) as t � � if G� (l)=l&`+o(1) as l � �. Abbreviate
BR(t)=Qr(t)+2 wRx .

The crux of the proof of the upper bound in Theorem 1.1 is the following
generalization of Proposition 4.4 of [BK00] adapted to the new definition
of r(t).

Proposition 3.1. There exists a constant C=C(})>0 and a ran-
dom variable C! # (0, �) such that, Prob-almost surely, for all R, t>C,

u(t, 0)�C!e&t+eCt�R2
3r(t) exp[t max

z # BR (t)
*d

z; 2R(!)] (3.2)
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Proof of Theorem 1.1, Upper Bound. With Proposition 3.1 in the
hand, the proof goes along very much the same lines as in [BK00]. Indeed,
let r(t) be as in (3.1) and set R in (3.2) to be R:(Kbt), where K>0 will be
chosen later and R will tend to �. Let H be in the #-class and recall that
:t=t&+o(1) with &=(1&#)�(3&#).

Abbreviate B(t)=BR:(Kbt)
(t) and *(z)=*d

z; 2R:(Kbt)
(!), and note that

r(t)�eo(t:(bt)
&2). Then, using also that limt � � :(Kbt)�:(bt)=K &, we have

from (3.2) that

lim sup
t � �

:2
bt

t
log u(t, 0)�

C
K2&R2+lim sup

t � �
[:2

bt
max

z # B(t)
*(z)] (3.3)

Prob-almost surely. Abbreviating M(t)=maxz # B(t) *(z), we have to prove
that, for any =>0,

lim sup
t � �

:2
bt

M(t)�&/~ +=, Prob-almost surely (3.4)

for some appropriate K # (0, �) and sufficiently large R.
Note that the eigenvalues *(z) have identical distribution. Further-

more, their exponential moments can be estimated by

lim sup
R � �

lim sup
t � �

:2
bt

bt
log (eKbt*(z)) �&K 1&2&/ (3.5)

where / # (0, �) is a constant related to /~ , see [BK00]. Since t [ M(t) is
increasing and t [ :bt

slowly varying, it suffices to prove (3.4) for t taking
only a discrete set of values; the main difference compared to [BK00] is
that now we take

1
G(t)

# [en : n # N] (3.6)

Let G(t)=e&n and note that (1.7) implies that bt :&2
bt

=n. The proof now
proceeds exactly as in [BK00]: We let pn(=)=Prob(M(t) :2

bt
�&/~ +=)

and use the Chebyshev inequality and (3.5) to derive that pn(=) is sum-
mable on n for all =>0, provided K is chosen appropriately and R is suf-
ficiently large. The claim is finished using the Borel�Cantelli lemma. K

It remains to prove Proposition 3.1. In [BK00], the choice t log t for
r(t) allowed us to use a simple probability estimate for the simple random
walk; in particular, the corresponding bound (3.2) held true uniformly in
all non-positive potentials. In our present cases, r(t) is typically much
smaller than t log t and the potential has to cooperate to get the bound
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(3.2). Unlike in [BK00], the role of the potential is actually dominant in
the cases of our present interest.

Lemma 3.2. For any b # (2}, �) there is a random variable C(!) #
(0, �) such that, Prob-almost surely,

u(t, 0)&uR(t, 0)

�C(!) \ `
R

x=0

b
&!(x) 6b

+ `
0

x=&R

b
&!(x) 6 b+ , R # N, t�0

(3.7)

Proof. Let (Xk)k # N0
be the embedded discrete-time simple random

walk on Z and let ln(x) be its local times defined by ln(x)=
�n

k=1 1[Xk=x]. Let Ed
y denote the expectation with respect to the dis-

crete-time walk, starting at y # Z. Abbreviate !k=!(Xk) and ûR(t, 0)=
u(t, 0)&uR(t, 0). Then, by (2.6) and (2.7),

ûR(t, 0)=e&2}t :
n�R

(2})n Ed
0

__|qn (t)
dt1 } } } dtn exp { :

n

k=0

!k tk= 1[supp ln /3 QR]& (3.8)

where qn(t)=[(t1 ,..., tn) # (0, �)n : t1+ } } } +tn�t], and t0 is a shorthand
for t&(t1+ } } } +tn).

Fix b>2} and define

An=[x # supp ln : !(x)�&b] (3.9)

Let

In=[k # [1,..., n] : Xk � An] (3.10)

be the set of all the times at which the walk visits a point x with
!(x)>&b.

By relaxing the constraint t1+ } } } +tn�t in qn(t) to tk�t for every
k # In , neglecting the terms with k # In _ [0] in the exponential, and
integrating out t1 ,..., tn , we get

ûR(t, 0)�e&2}t :
n�R

:
n

m=0

(2}t)m

m!

_Ed
0 _1[*In=m] 1[supp ln /3 QR] `

0<k�n : k � In

2}
&!k & (3.11)
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Neglecting the first indicator and the restriction to m�n, we can carry out
the sum over m in (3.11) and find that

ûR(t, 0)� :
n�R

Ed
0 _1[supp ln /3 QR] `

x # An
\ 2}

&!(x)+
ln (x)

& (3.12)

On [supp ln /3 QR], the walk visits either all sites in [0,..., R] or all sites
in [&R,..., 0]. Hence, we can estimate

1[supp ln /3 QR] `
x # An

2}
&!(x)

� `
R

x=1

b
&!(x) 6 b

+ `
1

x=&R

b
&!(x) 6 b

(3.13)

The claim (3.7) then follows from the assertion

:
�

n=1

Ed
0 _ `

x # An
\2}

b +
ln (x)&1

&<� Prob-almost surely (3.14)

where we used that !(x)� &b whenever x # An . (The term with x=0 in
(3.7) can be added or removed at the cost of changing C(!) by a finite
amount.)

Let us prove that (3.14) holds. First we note that An contains in every
sufficiently large interval in Z a positive fraction of sites. Indeed, put
p=Prob(!(0)>&b) # (0, 1] and note that by Crame� r's theorem we have
Prob(*(An & I )�( p�2)*I )�e&c*I for every bounded interval I/Z and
some c>0 independent of I. A routine application of the Borel�Cantelli
lemma implies that

\ interval I/[&n, n] & Z: *I�n1�4 O *(An & I )>
p
2

*I (3.15)

for n large enough, Prob-almost surely.
Now we prove that with high probability, there are sufficiently large

intervals which are traversed from one end to the other at least twice by
the random walk (Xk)k=0,..., n . Fix Kn=w3 log nx and abbreviate kn=
wn�Kn x. We divide the walk into Kn pieces (X (i )

k )k=0,..., kn
(neglecting a small

overshoot) with X (i )
k =X(i&1) kn+k&X(i&1) kn

for i=1,..., Kn . Note that
these Kn walks are independent copies of each other. Let us introduce the
events

Bn= ,
Kn&1

i=1

[sgn X (i )
kn

=sgn X (i+1)
kn

] and Cn= .
Kn

i=1

[ max
1�k�kn

|X (i )
k |�Ln]

(3.16)
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where Ln=- kn �(' log n). It is elementary that Pd
0(Bn)�2&Kn+1�

n&2+o(1) as n � �. Furthermore, with the help of a concatenation argu-
ment and convergence of simple random walk to Brownian motion we
derive that Pd

0(Cn)�n&2+o(1), whenever '>0 is large enough. Now we
estimate

Ed
0 _ `

x # An
\2}

b +
ln (x)&1

&�Pd
0(Bn)+Pd

0(Cn)+Ed
0 _1B c

n & C c
n

`
x # An

\2}
b +

ln (x)&1

&
(3.17)

Note that, on Bc
n & C c

n , there is an interval I/[&n, n] & Z with *I�Ln

such that every point of I is visited by at least two of the subwalks, i.e., we
have ln(x)�2 for any x # I. If n is sufficiently large, we deduce from (3.15)
that there are at least pLn �2 points x with ln(x)�2. By using this in (3.17),
we have

Ed
0 _ `

x # An
\2}

b +
ln (x)&1

&�n&2+o(1)+\2}
b +

Ln p�2

, n � � (3.18)

The right hand side is clearly summable on n # N since 2}�b<1. This
finishes the proof. K

Our next task is to get a good estimate on the size of the products
in (3.7).

Lemma 3.3. Suppose that ( log(&!(0) 6 1)) =�. Then, for all
b�1,

lim
n � �

1
G&1(1�n)

:
w2n log nx

x=1

log \&!(x) 6b
b +=� Prob-almost surely

(3.19)

Proof. Abbreviate Nn=w2n log nx and let b�1. Then

log \&!(x) 6b
b +�log(&!(x) 6 1)&log b (3.20)

Using this estimate and the Chebyshev inequality, we have for any %>0
that

Prob \ :
Nn

x=1

log \&!(x) 6 b
b +�%G&1(1�n)+

�exp[&NnG(1�*)+Nn* log b+*%G&1(1�n)] (3.21)
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for any *>0. Set *=1�G&1(1�n) and note that we have G(1�*)�* � � as
* a 0, due to ( log(&!(0) 6 1)) =�. Consequently, the term with log b is
negligible and the right-hand side of (3.21) is bounded by n&2+o(1). The
claim is finished by the Borel�Cantelli lemma. K

Proof of Proposition 3.1. Pick any b # (2}, �). Let t0 be so large
such that the sum in (3.19) with n=W1�G(t)X for all t�t0 exceeds
G&1(1�n). Note that r(t)�w2n log nx. Combining the results of Lemma 3.2
for R=r(t) and Lemma 3.3, we derive, for sufficiently large n resp. t, the
bound

u(t, 0)&ur(t)(t, 0)�2C(!) exp(&G&1(1�n)) (3.22)

where C(!) is the constant from (3.7). But G&1(1�n)�t by our choice of n,
which means that u(t, 0)&ur(t)(t, 0)�C!e&t, where C!=2C(!) 6 et0. The
rest of the argument does not involve the particular form of r(t) and can
directly be taken over from [BK00]. K

3.2. The Lower Bound

Unlike the upper bound, the lower bound was basically proved
already in [BK00], up to a change of the spatial scale and Lemma 3.4
below. For this reason, we shall only indicate the necessary changes.

First we prove the following converse of Lemma 3.3:

Lemma 3.4. Fix ' # (0, 1) and let G� ' satisfy (ii) and (iii) in
Assumption (G). Then there exists a * # (0, �) such that

lim sup
n � �

1

G� &1
' (*�n)

:
n

x=1

log(&!(x) 6 1)�1 Prob-almost surely

(3.23)

Proof. The argument is based on the asymptotic sublinearity of 1�G� '

at infinity. However, in order to have sublinearity on the whole interval
(0, �), we first construct an auxiliary modification of G� ' .

Let x0>0 be such that 1�G� ' is positive, increasing, and concave
on [x0 , �). Let D0 to be the right derivative of 1�G� ' at x0 . Define
G� ' : (0, �) � (0, �) by the formula

1�G� '(x)={D0x
1�G� '(x)+D0x0&1�G� '(x0)

if x�x0

if x>x0

(3.24)
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Note that 1�G� ' is positive, increasing, concave and hence sublinear on
(0, �). Moreover, Assumption (G)(iii) holds true for G� ' replaced by G� ' .

For a�1, abbreviate Ya(x)=log(&!(x) 6 a). Choose a=ex0 and
estimate, for n � �,

1

G� '(�n
x=1 Ya(x))

�
1+o(1)

G� '(�n
x=1 Ya(x))

�(1+o(1)) :
n

x=1

1

G� '(Ya(x))
(3.25)

where we used the fact that �n
x=1 Ya(x) � � almost surely, and sub-

linearity of 1�G� ' . Since we have that (1�G� '(Ya(x)))<�, the Strong Law
of Large Numbers tells us that the right-hand side of (3.25) is almost surely
no more than *n, where for * we can take, for instance,

*=2(1�G� '(Ya(0))) (3.26)

Hence, we derive

:
n

x=1

Y1(x)� :
n

x=1

Ya(x)�G� &1
' (*�n) (3.27)

which directly yields the desired claim. K

Another important ingredient is the following adaptation of the crucial
Proposition 5.1 of [BK00] to the present situation. For ' # (0, 1), choose
* as in Lemma 3.4 and let this time

#t=
*

G� '(t:&3
bt

)
(3.28)

be the size of the macrobox Q#t
(see Subsection 2.2). Note that t'`+o(1)�#t

�t`+o(1) as t � � if G(l)=l&`+o(1) as l � �. Suppose without loss of
generality that t [ #t is increasing.

Define for each � # C&(R) a ``microbox''

Q(t)={QR:(bt )

QR:(bt ) & supp �t

if #{0
if #=0

(3.29)

where �t : Z � (&�, 0] is the function �t( } )=�( } �:bt
)�:2

bt
. The crucial

input for the lower bound is the following claim, which says that, with
probability one provided LR(�)<1 and t is large, there is at least one
microbox Q(t) in Q#t

, where ! is no less than (the accordingly shifted) �t .
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Proposition 3.5. Let R>0 and fix � # C&(R) satisfying LR(�)
<1. Let =>0 and suppose Assumptions (G) and (H) hold. Then the
following holds almost surely: For each ' # (LR(�), 1), there is a t0=
t0(!, �, =, R, ')<� such that for each t�t0 , there is a yt # Q#t

with

!(z+ yt)��t(z)&=:&2
bt

\z # Q(t) (3.30)

Proof. We begin by formalizing the event in (3.30); in order to later
approximate continuous t by a discrete variable, we write =�2 instead of =:

A (t)
y = ,

z # Q(t) {!( y+z)��t(z)&
=

2:(bt)
2= (3.31)

Note that the probability of A (t)
y does not depend on y and note that dif-

ferent A (t)
y 's are independent if the y's have distance larger than 3R:(bt)

from each other. The proof of Lemma 5.5 in [BK00] shows that
Prob(A (t)

0 )�G(t)LR (�)+o(1) as t � � (the only modification required is to
replace every occurrence of t in the meaning exp[bt:(bt)

&2] by 1�G(t)).
In order to prove our claim, it is sufficient to show the summability of

pt=Prob \ ,
y # Q#t

(A (t)
y )c+ (3.32)

over all t>0 such that 1�G(t) # [en : n # N]. (The sufficiency follows from
the facts that :(bt)�:(bet) � 1 as t � � and that t [ bt and t [ #t are
increasing. The error terms are absorbed into an extra =�2 in (3.30) com-
pared to (3.31), see [BK00].)

Using the independence of A(t)
y for y # B(t)=Q#t

& w3R:(bt)x Z and
the bound Prob(A (t)

0 )�G(t)LR (�)+o(1), we easily derive

pt�(1&G(t)LR (�)+o(1))*B(t)�exp {&
G(t)LR (�)+o(1)

:(bt) G� '(t:(bt)
&3)= (3.33)

where we used that *B(t)�2#t �(3R:(bt)) and then applied the definition
of #t .

Use concavity of 1�G� ' to estimate 1�G� '(t:(bt)
&3)�:(bt)

&3�G� '(t) and
use Assumption (G)(i) to bound G� '(t) by G(t)'+o(1). Furthermore, since
:(bt) is bounded from above by a positive power of bt:(bt)

&2, we see from
(1.7) that :(bt)=G(t)o(1). Applying all this reasoning on the right-hand side
of (3.33), we see that pt�exp(&G(t)LR (�)&'+o(1)) as t � �, which is sum-
mable on the sequence of t such that 1�G(t) # [en : n # N]. This finishes the
proof. K
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Now we finish the proof of our main result.

Proof of Theorem 1.1, Lower Bound. Let =>0 and fix R>0 and
� # C&(R) such that LR(�)<1. Let ' # (LR(�), 1), define #t as in (3.28)
and let yt be as in Proposition 3.5; suppose yt�0 without loss of gener-
ality. Let rx=[&!(x) 6 1]&1. As in [BK00], the lower bound will be
obtained by restricting the walk in (2.6) to perform the following: The walk
keeps jumping toward yt , spending at most time rx at each site x such that
it reaches yt before time #t . Then it stays at yt until time #t and then within
yt+Q(t) for the remaining time t&#t .

Inserting this event into (2.6) and invoking Markov property at time
#t we get

u(t, 0)�II_III (3.34)

where the same argument as in [BK00] shows that III�et:(bt )&2 [*R (�)&=]

for large t, while for II we have

II=|
qyt

(#t )
dt0 } } } dtyt&1e&2}#t exp { :

n

k=0

!k tk= `
yt&1

x=0

1[tx�rx&1]

�e&2}#t `
yt&1

x=0

[rx erx !(x)]

�e&(2}+1) #t exp {& :
yt&1

x=0

log(&!(x) 6 1)= (3.35)

where we recalled the notation of (3.8). Now yt�#t , so using Lemma 3.4
we have that

II�e&(2}+1) #t exp[&G� &1
' (*�#t)(1+o(1))]

=e&(2}+1) #t&t:(bt )&3 (1+o(1)) (3.36)

where we used the definition of #t . Since 1�G� ' is asymptotically concave,
#t=*�G� '(t:&3

bt
)�O(t:&3

bt
) and the exponent is o(t:&2

bt
). Consequently,

u(t, 0)�et:(bt )&2 [*R (�)&=+o(1)] (3.37)

where o(1) still depends on '. The proof is finished by letting t � � (which
eliminates the dependence on '), optimizing over � and R with LR(�)<1
and letting = a 0. K
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